
The Standards for Mathematical

Practice in Algebra

1: Make sense of problems and persevere in solving them. There are at
least two kinds of sense-making associated with secondary school algebra:

(i) Looking for “hooks” that allow one to hang meaning on algebraic expres-
sions. This often takes the form of connections to geometry, where algebra The formulas A =
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area of a triangle with
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dissections of a triangle
into a parallelogram.

and geometry talk to each other. A good example of algebra inspiring ge-
ometry is when equivalent algebraic expressions have equivalent geometric
interpretations. Going the other way, geometry often inspires algebra: Dis-
section an a× b rectangle into a square with the same perimeter can lead
(with enough numerical prequels) to the algebraic identity
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(ii) At a different end of the sense-making continuum, making sense of algebraic
expressions often means treating them as elements of an algebraic struc-

ture—a system with its own internal logic and in which the expressions
have a life of their own. The system of polynomials in two variables with
rational coefficients, for example, becomes an object of study in its own
right. And identities that are established inside this system are true under
any substitution, yielding infinitely many numerical results. Common Core
uses the following example: Because the formal identity

Perseverance and
stamina are often
required when working
in such systems. For
example, it takes intense
concentration to see
any regularity to the
number of factors over
the integers for xn

− 1
as a function of n.

(a2 + b2)2 = (a2 − b2)2 + (2ab)2

is established via the rules for calculating with polynomials, it is true under
any substitution, yielding infinitely many Pythagorean triples.

2: Reason abstractly and quantitatively. Common Core describes one of
the hallmarks of algebraic reasoning when it discusses the uses of decontextual-
ization and contextualization. So much of elementary algebra involves creating
abstract algebraic models of situations and then transforming the models via
algebraic calculations to reveal “hidden” properties of the situations. This con-
nects to the modeling practice, and creating algebraic models of situations often
involves abstracting regularity from repeated calculations.

3: Construct viable arguments and critique the reasoning of others.

As in geometry, there are central questions in algebra that cannot be an- . . . and understanding
that one cannot decide
whether or not two
functions are equal
on an infinite domain
by looking at graphs
requires a careful critique
of what often seems like
plausible argument.

swered definitively by checking evidence. There are important results about
all functions of a certain type—the factor theorem for polynomial functions,
for example—and these require general arguments. Another related example:
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deciding whether or not two functions are equal on an infinite set cannot be
settled by looking at tables or graphs; it requires arguments of a different sort.

4: Model with Mathematics. Algebra is the classic modeling tool. Because
algebraic expressions are statements that can be interpreted in many different
algebraic structures, they can be used to describe situations in many differentA system of linear

equations, for example,
can tell many different
stories.

contexts.

Modeling with algebra is an area that can tie together many of the other stan-
dards (both content and practice). For example, to compare two different text
messaging plans, students can define two formulas that produce the cost of each
plan as a function of the number of messages sent. Constructing these formulas
can be facilitated by calculating the cost for several different input values and
then expressing the numerical calculations algebraically, describing the calcu-
lation of the cost for any numerical input. Finding the break-even point for
the two plans amounts to finding the input value for which the two formulas
produce the same cost, and this involves solving an equation. Students will be
familiar with this solution process, but the solution steps in Algebra 1 will be
seen as logical deductions, each justified by a basic rule of arithmetic.

5: Use appropriate tools strategically. One of the most difficult aspects
of learning to use algebra fluently is the incorporation of algebraic objects—
expressions, functions, systems, and abstract properties of systems in which one
can calculate—into the schema of what one considers the “real world.” There are
two uses of modern technology that are especially useful supports for developing
this practice.

• When students build computational models of mathematical functions, they
are reviewing, expressing, and getting a chance to examine their own ideas
about these functions. At one level, they are getting the benefit that generally
comes from writing out one’s ideas carefully and in detail: that process, by
itself, helps one organize one’s thinking, and externalize it enough to review
and examine it. But when the “notes” are executable on a calculator, students

In many parts of algebra,
precalculus and calculus,
students need to think of
functions as objects so
that they can transform
them and calculate
with them. This is
notoriously difficult for
many students—at least
as hard as the struggle
younger students have
when they need to
think of fractions as
numbers. This model-
building is extremely
effective as a device that
helps students think of
functions as things in
their own right.

can run the models they’ve made, verify their correctness or debug them, and
even use them as parts of more complex models. Students who are not yet
skilled enough to hold many parts of a model in their heads can build the
parts one by one, show how they go together and, for the present, leave the
orchestration to the calculator or computer. In short, computers can help
students tinker with the physics of mathematics.

• Another use of polynomial algebra is when the “x” is an indeterminate.
In this view of a polynomial, the letters are just placeholders (rather than
“valueholders”)—what’s really important are the operations between the let-
ters. The difference can be illustrated with two common activities in school
algebra: simplifying and graphing. When students simplify polynomials, they
are thinking of them as formal objects; the fact that x2

− 1 = (x − 1)(x+ 1)
comes from the fact that, if the right side is expanded by “the rules of algebra”
you end up with the left side. Computer algebra systems are a perfect tool toIf two polynomials are

equivalent formally, they
define the same function.
In Algebra 2, students
see an important
converse to this: if two
polynomial functions
agree at “enough”
inputs, one can be
obtained from the other
by the “rules of algebra.”

help students develop the habit of working in formal systems.

6: Attend to precision. In algebra, the habit of using precise language is not
only a mechanism for effective communication; it’s a tool for understanding.
Being able to “shoehorn” an idea into a precise algebraic description not only
allows you to exploit the idea—it helps you understand the idea in new ways. For
example, when investigating loan payments, if students can articulate something
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like “What you owe at the end of a month is what you owed at the start of the
month, plus 1

12

th

of the yearly interest on that amount, minus the monthly
payment,” they are well along a path that will let them construct a recursively
defined function for calculating loan payments.

7: Look for and make use of structure. In a real sense, algebra is about

structure. In more advanced courses, algebra is about the structure of systems
in which one can calculate. In Algebra 1, students learn to use the structure of
algebraic expressions. For example, writing 49x2 + 35x+ 6 as (7x)2 + 5(7x) + 6
highlights the structural similarity between this expression and z2 + 5z + 6,
leading to a factorization of the original: ((7x) + 3) ((7x) + 2).

This theme continues in Algebra 2, where students delve deeper into transform-
ing expressions in ways that reveal meaning. The example given in Common

Seeing hidden structure
in expressions is a knack
that takes time to
develop. For example,
it’s not easy to see that
x
4+x

2+1 is a difference
of squares “in disguise.”
Being explicit about
“sniffing for patterns”
can be a constant and
productive theme in
algebra class.

Core—that x4
− y4 can be seen as the difference of squares—is typical of this

practice. This habit of seeing subexpressions as single entities will serve students
well in areas like trigonometry, where, for example, the factorization of x4

− y4

described above can be used to show that the functions x 7→ cos4 x− sin4 x and
x 7→ cos2 x− sin2 x are, in fact, equal.

There’s another kind of structure-seeking that’s begun in Algebra 1. Common
Core calls for attention to the structural similarities between polynomials and
integers. The study of these these similarities can be deepened in Algebra 2: Like
integers, polynomials have a division algorithm, and division of polynomials can
be used to understand the factor theorem, to transform rational expressions, to
help solve equations, and to factor polynomials.

8: Look for and express regularity in repeated reasoning. It’s common
knowledge among teachers that coming up with equations or functions that
model situations is much harder for most students than calculating or trans-
forming the resulting expressions. This mathematical practice is an effective Finding the areas of

several triangles, given
numerical values for
their side-lengths, can
(if this habit is exercised
carefully) lead naturally
to a proof of Heron’s
formula.

way to help beginning students develop the skill of describing general relation-
ships by working through several specific examples to get the “rhythm” of their
calculations and then expressing what they are doing with algebraic symbolism.

This habit can help students make a more complete analysis of sequences, espe-
cially arithmetic and geometric sequences, and their associated series. Develop-
ing recursive formulas for sequences is facilitated by the practice of abstracting
regularity for how you get from one term to the next and then giving a precise
description of this process in algebraic symbols. Technology can be a useful tool
here: most CAS systems allow one to model recursive function definitions in no-
tation that is close to standard mathematical notation. And spreadsheets make
natural the process of taking successive differences ands running totals.

The same thinking—finding and articulating the rhythm in calculations—can
help students analyze mortgage payments, and the ability for getting a closed
form for a geometric series lets them make a complete analysis of this topic. And
this practice is also a tool for using difference tables to find simple functions
that agree with a set of data.


