Million Dollar Mathematics of Game Shows

Bowen Kerins

Senior Research Scientist, EDC

(also secretly a part-time game show consultant)
bkerins@edc.org

PRIZES!

Want to win?

We'll need some volunteers for games.

You may leave here with fabulous prizes!
(Disclaimer: prizes are very unlikely to be "fabulous".)

PRIZES!

Speaking of which...

Sarah Trask, come on down!

You're our first contestant!

Deal or No Deal

$$
\begin{array}{lc}
\$ 0.01 & \$ 1 \\
\$ 0.10 & \$ 5 \\
\$ 0.25 & \$ 10
\end{array}
$$

Expected Value Hour

$\$.01$
$\$ 1$
$\$ 5$
$\$ 10$
$\$ 25$
$\$ 50$
$\$ 75$
$\$ 100$
$\$ 200$
$\$ 300$
$\$ 400$
$\$ 500$
$\$ 750$
\$1,000
\$5,000
\$10,000 \$25,000
\$50,000
\$75,000 \$100,000 \$200,000 \$300,000 \$400,000 \$500,000 \$750,000
\$1,000,000

Expected Value Hour

$\$.01$
\$1
\$5
\$10
\$25
\$50
\$75
\$100
\$200
\$300
\$400
\$500
\$750

A "fair deal":

Multiply each outcome by its probability...

Total: \$410,210

Fair deal: ~\$102,500
\$1,000
\$5,000
\$10,000
\$25,000
\$50,000
\$75,000
\$100,000
\$200,000
\$300,000
\$400,000
\$500,000
\$750,000
\$1,000,000

Expected Value Hour

$\$.01$
$\$ 1$
$\$ 5$
$\$ 10$
$\$ 25$
$\$ 50$
$\$ 75$
$\$ 100$
$\$ 200$
$\$ 300$
$\$ 400$
$\$ 500$
$\$ 750$

The "bank offer":

Guarantee, almost always less than fair value

Fair deal: ~\$102,500
Offer: \$82,000
Deal or No Deal?
\$1,000
\$5,000
\$10,000
\$25,000
\$50,000
\$75,000
\$100,000
\$200,000
\$300,000
\$400,000
\$500,000
\$750,000
\$1,000,000

Expected Value Hour

$\$.01$	What's the expected	$\$ 1,000$
$\$ 1$	value of the initial	$\$ 5,000$
$\$ 5$	board?	$\$ 20,000$
$\$ 10$		$\$ 50,000$
$\$ 25$		000
$\$ 50$	How does it compare	$\$ 75,000$
$\$ 75$	$\$ 100,000$	
$\$ 100$	to the first offer?	$\$ 200,000$
$\$ 200$		$\$ 300,000$
$\$ 300$	$H o w ~ d o e s ~ i t ~ c o m p a r e ~$	$\$ 00,000$
$\$ 400$	to how much money	$\$ 500,000$
$\$ 500$	$\$ 750,000$	
$\$ 750$	players actually win?	$\$ 1,000,000$

Expected Value Hour

$\$.01$	Initial board \ldots	$\$ 1,000$
$\$ 1$	$\$ 5,000$	
$\$ 5$	Fair deal: $\$ 131,477$	$\$ 10,000$
$\$ 10$		$\$ 25,000$
$\$ 25$		$\$ 50,00$
$\$ 50$	First offer:	$\$ 75,000$
$\$ 75$	$\sim \$ 8,000-\$ 20,000$	$\$ 100,000$
$\$ 100$		$\$ 200,000$
$\$ 200$		$\$ 00,000$
$\$ 300$		$\$ 00,000$
$\$ 400$	The first offers are	$\$ 500,000$
$\$ 500$	terrible! Why?	$\$ 750,000$
$\$ 750$		$\$ 1,000,000$

Expected Value Hour

$\$.01$		$\$ 1,000$
$\$ 1$	Actual average	$\$ 5,000$
$\$ 5$	winnings per player:	$\$ 10,000$
$\$ 10$	$\$ 25,000$	
$\$ 25$	$\$ 122,500$	$\$ 50,00$
$\$ 50$		$\$ 75,000$
$\$ 75$	Initial board's	$\$ 100,000$
$\$ 100$	expected value:	$\$ 200,000$
$\$ 200$	$\$ 00,000$	
$\$ 300$	$\$ 131,477$	$\$ 00,000$
$\$ 400$		$\$ 000,000$
$\$ 500$		$\$ 750,000$
$\$ 750$	(Close! Why the difference?)	$\$ 1,000,000$

Math in Game Shows

Game shows are filled with math problems...

- Contestants
- How do I play best?
- How much risk should I take?
- Producers
- How do I build a fun game to watch?
- How will contestants behave?
- How much money are we giving out?

Personal Encounters

February 2000: Millionaire (episode \#49) * $=$
(for $\$ 1000$: How many degrees in a right angle?)

Personal Encounters

February 2000: Millionaire (episode \#49)

(Got the next question wrong. Yes, that was my real hair.)

Personal Encounters

April 2004: The Price Is Right

(Double overbid on the showcase! Bummer.)

Personal Encounters

May 2007: National Bingo Night

(We worked on this show a lot longer than it lasted.)

Personal Encounters

August 2012: Oh Sit!

(Wipeout + musical chairs + Jamie Kennedy = ???)

Personal Encounters

June 2014: Sing Your Face Off

(Even this needed a mathematical advisor.)

Let's Play!

We're picking one contestant for this game.

We'll also need all sixteen volunteers from the audience to help us with the game.

John Steiner, come on down!

Sponsored by... CME Project

- NSF-funded curriculum from EDC / Pearson
- ~ 100,000 students nationally
- Common Core State Standards: 100\% alignment

Now available in new integrated flavor!

The widespread utility and effectiveness of mathematics come not just from mastering specific skills, topics, and techniques, but more importantly, from developing the ways of thinking -the habits of mind-used to create the results.

CME Project Overview

By focusing on habits of mind...

- Coherent curriculum, fewer chapters
- CME was 95% aligned to CCSSM content standards at the time the standards were first published
- Especially strong alignment with MPs
- CCSSM used CME Project's language in writing MPs!

cmeproject.edc.org

(we also do house calls... but now, back to the show)

The Price Is Right

- Now in its 43rd year
- Lots of good math problems!
- Huge sample size of repeated play

tpirstats.com

1/2 Off

There are 16 boxes, uh, people.

One has a big prize.
You'll have 3 chances to eliminate half the people.

Choice \#1

Which of these is half off the actual price?

Chowda

Lobsta Roll

\$6.00

$\$ 9.50$

Choice \#1

Which of these is half off the actual price?

Chowda

Lobsta Roll

$\$ 6.00$

$\$ 19.00$

Choice \#2

Which of these is half off the actual price?

Bottled Water
$\$ 1.50$

$\$ 2.00$

Choice \#2

Which of these is half off the actual price?

$\$ 1.50$

Bottled Water

$\$ 4.00$

Choice \#3

Which of these is half off the actual price?

Small Beah

$$
\$ 4.00
$$

Fenway Frank

\$5.25

Choice \#3

Which of these is half off the actual price?

Small Beah

$\$ 8.00$

Fenway Frank

$$
\$ 5.25
$$

Prize Sponsored by MTBoS

The Math Twitter Blog-o-Sphere is an awesome place to hang out virtually and talk math.

Stop by! 841

Nix the Tricks by Tina
Cardone is awesome!

The Producers' Questions

If we keep offering this game repeatedly, how much will we have to pay for it?

How likely is a win if the player guesses...
0 right? 1 right? 2 right? 3 right?
(and the most important question...)

The Producers' Questions

If we keep offering this game repeatedly, how much will we have to pay for it?

How likely is a win if the player guesses...
0 right? 1 right? 2 right? 3 right?
Is this game fun to watch??

Analysis: 1/2 Off

The number of correct answers determines the probability of winning.

Hooray. Now what?

Analysis: 1/2 Off

The normal $1 / 2$ Off prize is $\$ 10,000$, plus a $\$ 1,000$ bonus for getting all 3 right.

$\#$	Avg. Winnings
0	$1 / 16$ * $10000=\$ 625$
1	$1 / 8$ * $10000=\$ 1250$
2	$1 / 4$ * $10000=\$ 2500$
3	$1 / 2 * 10000+1000=\$ 6000$

Analysis: 1/2 Off

The normal $1 / 2$ Off prize is $\$ 10,000$, plus a $\$ 1,000$ bonus for getting all 3 right.

$\#$	Avg. Winnings
0	$1 / 16$ * $10000=\$ 625$
1	$1 / 8$ * $10000=\$ 1250$
2	$1 / 4$ * $10000=\$ 2500$
3	$1 / 2 * 10000+1000=\$ 6000$

Can we just average these four numbers?

Historical Data

1/2 Off has been played 187 times since 2000, fully detailed on tpirstats.com.

2000-2014
0 correct: 5.9\% (11 times)
1 correct: 24.1\% (45 times)
2 correct: 41.2\% (77 times)
3 correct: 28.9\% (54 times)

Using Historical Data

Use these percentages for the weighted average.

\#	Contribution to EV	Product
0	$\$ 625$ * 5.9%	$\$ 37$
1	$\$ 1250$ * 24.1%	$\$ 301$
2	$\$ 2500$ * 41.2%	$\$ 1030$
3	$\$ 6000$ * 28.9\%	$\$ 1734$
	total:	$\$ 3102$

Using Historical Data

Use these percentages for the weighted average.

Using Algebra

If the change of getting a choice right is $p \ldots$

$\#$	Contribution to EV
0	$625^{*}(1-p)^{3}$
1	$1250 * 3 p(1-p)^{2}$
2	$2500^{*} 3 p^{2}(1-p)$
3	$6000^{*} p^{3}$

Players choose with $p \approx .643$

$$
f(.643) \approx \$ 3038
$$

What's In The Box??

After 187 plays, where is the money?

9	15	7	21
7	16	8	16
9	9	8	11
3	21	12	15

Sponsored by... Marshmallow Fluff

Marshmallow Fluff:
The second best thing to ever come out of Lynn, MA

Try a Fluffernutter! No,
 seriously, they're awesome.

Let's Play!

Sara Cafarelli... come on down!

Master Key

There are 5 keys.
One key unlocks each of three prizes.
One key is the Master Key and opens it all.

One key is a dud.
You'll have 2 chances
 to earn a key.

Prizes Sponsored by Heinemann

Transition To Algebra raises the competence and confidence of first-year algebra students

> Stop by! $834-835$

Making Sense Of Algebra just published!

Choice \#1

How many member states are there in the Smarter Balanced consortium?

121

$$
12 \text { or } 21 ?
$$

Choice \#1

How many member states are there in the Smarter Balanced consortium?

Choice \#2

How many total chapters are there in the four CME Project books?

432

$$
43 \text { or } 32 ?
$$

Choice \#2

How many total chapters are there in the four CME Project books?

Pick Keys

(Hopefully, you won at least one key...)

Analysis: Master Key

 Let's say we only care about the big prize.| \# keys | P (win big prize) |
| :---: | :---: |
| 0 | 0 |
| 1 | $2 / 5=40 \%$ |
| 2 | $\mathrm{Hm} \ldots$ |

Analysis: Master Key

 Let's say we only care about the big prize.| \# keys | $P($ win big prize $)$ |
| :---: | :---: |
| 0 | 0 |
| 1 | $2 / 5=40 \%$ |
| 2 | $\mathrm{Hm} \ldots$ |

What about finding P (lose if 2 keys)?

Analysis: Master Key

Let's say we only care about the big prize.

\# keys	P (win big prize)
0	0
1	$2 / 5=40 \%$
2	$7 / 10=70 \%$

$P($ lose if 2 keys $)=3 / 5 * 2 / 4$

Historical Data

Master Key has been played 111 times.

\# keys	P (win big)	P (actual)
$\mathbf{0}$	0	
1	40%	
$\mathbf{2}$	$\mathbf{7 0 \%}$	

Historical Data

Master Key has been played 111 times.

\# keys	P (win big)	P (actual)
0	0	0
1	40%	30.5%
2	70%	67.7%

Where are the Keys?

Here's the probability for each key to win big.

Wait, what should the probabilities be?

Where are the Keys?

Here's the probability for each key to win big.

If everything was "equal"...

40%	40%	40%	40%	40%

Where are the Keys?

Here's the probability for each key to win big.

The actual probabilities...

The Choices, Too...

We asked for "left" or "right".

50/50? Hardly.

In Master Key,
78.2\% of the correct choices are to the right.

Sponsored by... SolveMe!

Hundreds of puzzles to

 play ... or make your own!It's fun and teaches equation solving! Oh, and it's $F R E E$ for iPad.

Mobiles

Classroom Interlude

In my teaching, I found some game shows worked better than others. Games are great test review! Good as openers / wrap-ups.

Good
Press Your Luck
Card Sharks Millionaire
High Rollers

Bad

Jeopardy! (yes, bad)
Deal or No Deal
Wheel of Fortune
Studs

Classroom Interlude

Here are a few potential projects to try.

- Make a game with $P($ win $) \approx 1 / 3$.
- What are good wagers in Final Jeopardy?
- What other Price Is Right games could be played better through strategy? (Slate)
- What's the probability of winning $\$ 1$ million on Wheel of Fortune?

Let's Play!

(It's the last game, let's make it a good one...)

> Hannah... come on down!

You're going to play... PLINKO!

With a chance to win...

You're going to play... PLINKO!

With a chance to win...

Prize Sponsored by... EDC's
 Mathematical Practice Institute

- EDC's professional development program
- Curriculum-neutral, focused on Standards for

Mathematical Practice

- PD on your schedule: one day, multi-day
- Online webinars available

Visit the MPI website: mpi.edc.org
That website again is: mpi.edc.org

A Plinko Dilemma

The Price Is Right
@PricelsRight

Following

Should we make the center number on \#Plinko board \$25,000 or make the ends worth \$10,000 each? \#UDecide \#PricelsRight

Backtracking Plinko

How much is this Plinko chip worth right now?

Each entry is the value of a chip at that spot.

We know the last row...

Work from the bottom up... each number is the mean of the two below it!

| 300 | 525 | 625 | 2750 | 5000 | 2750 | 625 | 525 | 300 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 300 | 750 | 500 | 5000 | 5000 | 500 | 750 | 300 | |
| 100 | 500 | 1000 | 0 | 10000 | 0 | 1000 | 500 | 100 |

Work from the bottom up... each number is the mean of the two below it!

을 든

Work from the bottom up... each number is the mean of the two below it!

```
300
    300 750 500 5000 5000 500 750 300
100 500 1000
```


을 픈

을 픈

을
픔

$\stackrel{\text { 을 }}{\underline{\underline{1}}}$

бu!үэедұэея

을 든

$\begin{array}{llllllllllll}543 & 776 & 1511 & 2499 & 2985 & 2499 & 1511 & 776 & 543\end{array}$
$543 \quad 1009 \quad 2013 \quad 2985 \quad 2985 \quad 20131009 \quad 543$
$453 \quad 633 \quad 1384 \quad 2642 \quad 3328 \quad 2642 \quad 1384 \quad 633 \quad 453$
$\begin{array}{lllllllllll}453 & 813 & 1956 & 3328 & 3328 & 1956 & 813 & 453\end{array}$
$\begin{array}{llllllllllll}413 & 494 & 1131 & 2781 & 3875 & 2781 & 1131 & 494 & 413\end{array}$

In the long run, it all evens out.

But this isn't a long run...

```
300 525 625 2750 5000 2750 625 525 300
    300 750 500 5000 5000 500 750 300
```

$\begin{array}{llllllllll}100 & 500 & 1000 & 0 & 10000 & 0 & 1000 & 500 & 100\end{array}$

을 든

$\begin{array}{llllllllllll}659 & 901 & 1574 & 2374 & 2742 & 2374 & 1574 & 901 & 659\end{array}$

$$
659 \quad 1143 \quad 2005 \quad 2742 \quad 2742 \quad 2005 \quad 1143 \quad 659
$$

$\begin{array}{llllllllllll}543 & 776 & 1511 & 2499 & 2985 & 2499 & 1511 & 776 & 543\end{array}$ $543 \quad 1009 \quad 2013 \quad 2985 \quad 2985 \quad 20131009 \quad 543$
$\begin{array}{llllllllllll}453 & 633 & 1384 & 2642 & 3328 & 2642 & 1384 & 633 & 453\end{array}$
$\begin{array}{llllllllll}453 & 813 & 1956 & 3328 & 3328 & 1956 & 813 & 453\end{array}$
$\begin{array}{llllllllllll}413 & 494 & 1131 & 2781 & 3875 & 2781 & 1131 & 494 & 413\end{array}$

In the long run, it all evens out.

But this isn't a long run...
∞
$659 \quad 901 \quad 1574 \quad 2374 \quad 2742 \quad 2374 \quad 1574 \quad 901 \quad 659$
$659 \quad 1143 \quad 2005 \quad 2742 \quad 2742 \quad 2005 \quad 1143 \quad 659$
$\begin{array}{llllllllllll}543 & 776 & 1511 & 2499 & 2985 & 2499 & 1511 & 776 & 543\end{array}$
$543 \quad 1009 \quad 2013 \quad 2985 \quad 2985 \quad 2013 \quad 1009 \quad 543$
453

| 633 | 1384 | 2642 | 3328 | 2642 | 1384 | 633 | 453 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllll}453 & 813 & 1956 & 3328 & 3328 & 1956 & 813 & 453\end{array}$
$\begin{array}{lllllllllll}413 & 494 & 1131 & 2781 & 3875 & 2781 & 1131 & 494 & 413\end{array}$

$$
\begin{array}{llllllll}
413 & 575 & 1688 & 3875 & 3875 & 1688 & 575 & 413
\end{array}
$$

$$
\begin{array}{lllllllll}
300 & 525 & 625 & 2750 & 5000 & 2750 & 625 & 525 & 300
\end{array}
$$

$$
\begin{array}{lllllll}
300 & 750 & 500 & 5000 & 5000 & 500 & 750 \\
\hline
\end{array}
$$

$\begin{array}{lllllllllll}100 & 500 & 1000 & 0 & 10000 & 0 & 1000 & 500 & 100\end{array}$

At the top

 we find the expected value for dropping a chip from each slot!
$659 \quad 901 \quad 1574 \quad 2374 \quad 2742 \quad 2374 \quad 1574 \quad 901 \quad 659$
$659114320052742274220051143 \quad 659$
$\begin{array}{llllllllllll}543 & 776 & 1511 & 2499 & 2985 & 2499 & 1511 & 776 & 543\end{array}$
$543 \quad 1009 \quad 2013 \quad 2985 \quad 2985 \quad 20131009 \quad 543$
453
$\begin{array}{llllllllll}633 & 1384 & 2642 & 3328 & 2642 & 1384 & 633 & 453\end{array}$

453	813	1956	3328	3328	1956	813

$\begin{array}{llllllllllll}413 & 494 & 1131 & 2781 & 3875 & 2781 & 1131 & 494 & 413\end{array}$

At the top we find the expected value for dropping a chip from each slot!

Plinko Advice

Where you drop Plinko chips matters a lot!

Drop Above	Chip EV
$\$ 10,000$	$\$ 2,558$
$\$ 0$	$\$ 2,266$
$\$ 1,000$	$\$ 1,606$
$\$ 500$	$\$ 1,009$
$\$ 100$	$\$ 780$

So... about that
dilemma...

Now each entry is the probability of entering that spot...

Now each entry is the probability of entering that spot...

More to Explore

Many related topics are asked about in CME Project, and in the Park City Math Institute materials at www.mathforum.org/pcmi/hstp/sum2013/morning

- How can spinners or dice be represented by polynomials?
- How can you use Pascal's Triangle on Plinko? Does "No Walls" help somehow?
- What's the best possible total in an episode of Jeopardy?

eСМI

- Inspired by the Park City Mathematics Institute
- eCMI is live, online, concurrent PD at multiple sites
- Currently in pilot testing
- Sign up for free!

Sign up at the eCMI website:

ecmi.edc.org
(Enough commercials, already.)

Thanks and good luck! Any questions?

 Bowen KerinsEducation Development Center

bkerins@edc.org

mpi.edc.org
cmeproject.edc.org

